Hyperkaehler.info

the geography of compact irreducible holomorphic symplectic (or hyperkähler) varieties

Betti numbers

These are the ranks of the cohomologies $\mathrm{H}^i(X,\mathbb{Z})$.

Links to other invariants

In the Hodge diamond the Betti numbers correspond to sums of the rows in the diamond (although by symmetry this is the same as the columns in this special case): we have that $\operatorname{rk}\operatorname{H}^i(X,\mathbb{Z})=\dim_{\mathbb{C}}\operatorname{H}^i(X,\mathbb{C})=\sum_{p+q=i}\dim_{\mathbb{C}}\operatorname{H}^q(X,\Omega_X^p)$.

The alternating sum of the Betti numbers is then the Euler characteristic.

Salamon's identity

The middle Betti number $\mathrm{b}_{2n}$ on a $2n$-dimensional hyperkähler manifold is in an interesting way related to the other Betti numbers: \[ n\mathrm{b}_{2n}=2\sum_{j=1}^{2n}(-1)^j(3j^2-n)\mathrm{b}_{2n-j}(X) \]

For instance, in the 4-dimensional case, we have \[ \begin{aligned} 2\cdot\mathrm{b}_4(\mathrm{K3}^{[2]})&=2\left( 10\cdot\mathrm{b}_2(\mathrm{K3}^{[2]}) + 46\mathrm{b}_0(\mathrm{K3}^{[2]}) \right) \\ &=2\cdot 276 \\ 2\cdot\mathrm{b}_4(\mathrm{Kum}^2)&=2\left( -\mathrm{b}_3(\mathrm{Kum}^2) + 10\cdot\mathrm{b}_2(\mathrm{Kum}^2) + 46\mathrm{b}_0(\mathrm{Kum}^2) \right) \\ &=2\cdot 108 \end{aligned} \]

All Betti numbers

:

Betti number K3
$\mathrm{b}_{ 0 }(X)$ 1
$\mathrm{b}_{ 1 }(X)$ 0
$\mathrm{b}_{ 2 }(X)$ 22
Betti number K3[2]-typeKum2-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 276 108
Betti number K3[3]-typeKum3-typeOG6
$\mathrm{b}_{ 0 }(X)$ 1 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7 8
$\mathrm{b}_{ 3 }(X)$ 0 8 0
$\mathrm{b}_{ 4 }(X)$ 299 51 199
$\mathrm{b}_{ 5 }(X)$ 0 56 0
$\mathrm{b}_{ 6 }(X)$ 2554 458 1504
Betti number K3[4]-typeKum4-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2852 168
$\mathrm{b}_{ 7 }(X)$ 0 288
$\mathrm{b}_{ 8 }(X)$ 19298 1046
Betti number K3[5]-typeKum5-typeOG10
$\mathrm{b}_{ 0 }(X)$ 1 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7 24
$\mathrm{b}_{ 3 }(X)$ 0 8 0
$\mathrm{b}_{ 4 }(X)$ 300 36 300
$\mathrm{b}_{ 5 }(X)$ 0 64 0
$\mathrm{b}_{ 6 }(X)$ 2875 191 2899
$\mathrm{b}_{ 7 }(X)$ 0 344 0
$\mathrm{b}_{ 8 }(X)$ 22127 915 22150
$\mathrm{b}_{ 9 }(X)$ 0 1312 0
$\mathrm{b}_{ 10 }(X)$ 125604 3748 126156
Betti number K3[6]-typeKum6-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2876 176
$\mathrm{b}_{ 7 }(X)$ 0 352
$\mathrm{b}_{ 8 }(X)$ 22426 786
$\mathrm{b}_{ 9 }(X)$ 0 1528
$\mathrm{b}_{ 10 }(X)$ 147431 2879
$\mathrm{b}_{ 11 }(X)$ 0 4496
$\mathrm{b}_{ 12 }(X)$ 727606 7870
Betti number K3[7]-typeKum7-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2876 176
$\mathrm{b}_{ 7 }(X)$ 0 352
$\mathrm{b}_{ 8 }(X)$ 22449 809
$\mathrm{b}_{ 9 }(X)$ 0 1584
$\mathrm{b}_{ 10 }(X)$ 150283 3327
$\mathrm{b}_{ 11 }(X)$ 0 6136
$\mathrm{b}_{ 12 }(X)$ 872162 11298
$\mathrm{b}_{ 13 }(X)$ 0 16432
$\mathrm{b}_{ 14 }(X)$ 3834308 25524
Betti number K3[8]-typeKum8-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2876 176
$\mathrm{b}_{ 7 }(X)$ 0 352
$\mathrm{b}_{ 8 }(X)$ 22450 794
$\mathrm{b}_{ 9 }(X)$ 0 1592
$\mathrm{b}_{ 10 }(X)$ 150582 3278
$\mathrm{b}_{ 11 }(X)$ 0 6360
$\mathrm{b}_{ 12 }(X)$ 894288 12202
$\mathrm{b}_{ 13 }(X)$ 0 21704
$\mathrm{b}_{ 14 }(X)$ 4684044 36440
$\mathrm{b}_{ 15 }(X)$ 0 51640
$\mathrm{b}_{ 16 }(X)$ 18669447 67049
Betti number K3[9]-typeKum9-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2876 176
$\mathrm{b}_{ 7 }(X)$ 0 352
$\mathrm{b}_{ 8 }(X)$ 22450 794
$\mathrm{b}_{ 9 }(X)$ 0 1592
$\mathrm{b}_{ 10 }(X)$ 150605 3301
$\mathrm{b}_{ 11 }(X)$ 0 6416
$\mathrm{b}_{ 12 }(X)$ 897141 12571
$\mathrm{b}_{ 13 }(X)$ 0 23456
$\mathrm{b}_{ 14 }(X)$ 4831451 43043
$\mathrm{b}_{ 15 }(X)$ 0 74040
$\mathrm{b}_{ 16 }(X)$ 23203208 118672
$\mathrm{b}_{ 17 }(X)$ 0 162808
$\mathrm{b}_{ 18 }(X)$ 84967890 198270
Betti number K3[10]-typeKum10-type
$\mathrm{b}_{ 0 }(X)$ 1 1
$\mathrm{b}_{ 1 }(X)$ 0 0
$\mathrm{b}_{ 2 }(X)$ 23 7
$\mathrm{b}_{ 3 }(X)$ 0 8
$\mathrm{b}_{ 4 }(X)$ 300 36
$\mathrm{b}_{ 5 }(X)$ 0 64
$\mathrm{b}_{ 6 }(X)$ 2876 176
$\mathrm{b}_{ 7 }(X)$ 0 352
$\mathrm{b}_{ 8 }(X)$ 22450 794
$\mathrm{b}_{ 9 }(X)$ 0 1592
$\mathrm{b}_{ 10 }(X)$ 150606 3286
$\mathrm{b}_{ 11 }(X)$ 0 6424
$\mathrm{b}_{ 12 }(X)$ 897440 12522
$\mathrm{b}_{ 13 }(X)$ 0 23680
$\mathrm{b}_{ 14 }(X)$ 4853600 44142
$\mathrm{b}_{ 15 }(X)$ 0 79920
$\mathrm{b}_{ 16 }(X)$ 24075047 140073
$\mathrm{b}_{ 17 }(X)$ 0 232368
$\mathrm{b}_{ 18 }(X)$ 107276810 354034
$\mathrm{b}_{ 19 }(X)$ 0 471712
$\mathrm{b}_{ 20 }(X)$ 364690994 538070