Chern numbers
Chern numbers are the integrals of monomials in the Chern classes of $X$ living in top degrees. These are integers that can be used to control various other numerical invariants of varieties.
For a hyperkähler manifold the odd Chern classes vanish, so in the table below we only list monomials using even Chern classes.
All Chern numbers
dimension d (2–20) :
monomial
K3[3] -type Kum3 -type OG6
$\mathrm{c}_{ 2 }^{ 3 }$
36800
30208
30720
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }$
14720
6784
7680
$\mathrm{c}_{ 6 }^{ }$
3200
448
1920
monomial
K3[4] -type Kum4 -type
$\mathrm{c}_{ 2 }^{ 4 }$
1992240
1470000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }$
813240
405000
$\mathrm{c}_{ 4 }^{ 2 }$
332730
111750
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ }$
182340
37500
$\mathrm{c}_{ 8 }^{ }$
25650
750
monomial
K3[5] -type Kum5 -type OG10
$\mathrm{c}_{ 2 }^{ 5 }$
126867456
84478464
127370880
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ }$
52697088
26220672
53071200
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 2 }$
21921408
8141472
22113000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 6 }^{ }$
12168576
3141504
12383280
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
5075424
979776
5159700
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 8 }^{ }$
1774080
142560
1791720
$\mathrm{c}_{ 10 }^{ }$
176256
2592
176904
monomial
K3[6] -type Kum6 -type
$\mathrm{c}_{ 2 }^{ 6 }$
9277276480
5603050432
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 4 }^{ }$
3910848640
1881462016
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ 2 }$
1650311720
631808744
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 6 }^{ }$
927397840
268796752
$\mathrm{c}_{ 4 }^{ 3 }$
697106648
212190776
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
392090040
90412056
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 8 }^{ }$
139942280
17075912
$\mathrm{c}_{ 6 }^{ 2 }$
93495320
12976376
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ }$
59314272
5762400
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 10 }^{ }$
14450680
441784
$\mathrm{c}_{ 12 }^{ }$
1073720
2744
monomial
K3[7] -type Kum7 -type
$\mathrm{c}_{ 2 }^{ 7 }$
765374164992
421414305792
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 4 }^{ }$
326732507136
149664301056
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ 2 }$
139582386432
53149827072
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 6 }^{ }$
79324710912
24230756352
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 3 }$
59674012416
18874417152
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
33935583744
8610545664
$\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 6 }^{ }$
14528215296
3059945472
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 8 }^{ }$
12357114624
1914077184
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ 2 }$
8273055744
1397121024
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ }$
5296568832
681332736
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 10 }^{ }$
1324608768
71909376
$\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
1296158976
110853120
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 10 }^{ }$
569044224
25700352
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 12 }^{ }$
102477312
1198080
$\mathrm{c}_{ 14 }^{ }$
5930496
7680
monomial
K3[8] -type Kum8 -type
$\mathrm{c}_{ 2 }^{ 8 }$
70277256403200
35447947999488
$\mathrm{c}_{ 2 }^{ 6 }\mathrm{c}_{ 4 }^{ }$
30327407026560
13129602781824
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 4 }^{ 2 }$
13094639681760
4862661530400
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 6 }^{ }$
7517275416000
2332758616128
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ 3 }$
5657019716880
1800797040144
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
3249219677760
864167470848
$\mathrm{c}_{ 4 }^{ 4 }$
2445207931980
666853820172
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 6 }^{ }$
1405173296520
320117226120
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 8 }^{ }$
1205400258720
215605377504
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 6 }^{ 2 }$
807925003200
153694101888
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ }$
521787430080
79938804096
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ 2 }$
349760996280
56953381608
$\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 8 }^{ }$
225987046020
29638792620
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 10 }^{ }$
133823975040
10441752768
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
130128762960
14239224576
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 10 }^{ }$
58033047240
3878495784
$\mathrm{c}_{ 8 }^{ 2 }$
21049285275
1322820801
$\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 10 }^{ }$
14525621460
692780364
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 12 }^{ }$
10767198960
254566800
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 12 }^{ }$
4678568010
94850190
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 14 }^{ }$
649511820
2685636
$\mathrm{c}_{ 16 }^{ }$
30178575
9477
monomial
K3[9] -type Kum9 -type
$\mathrm{c}_{ 2 }^{ 9 }$
7105044485242880
3297871360000000
$\mathrm{c}_{ 2 }^{ 7 }\mathrm{c}_{ 4 }^{ }$
3095054052884480
1262135680000000
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 4 }^{ 2 }$
1348811566120960
482990816000000
$\mathrm{c}_{ 2 }^{ 6 }\mathrm{c}_{ 6 }^{ }$
781347805921280
240910720000000
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ 3 }$
588050734243840
184814229440000
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
340787113328640
92197363200000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 4 }$
256482451425280
70712975120000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 6 }^{ }$
148696308725760
35281909440000
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 8 }^{ }$
128601459097600
25082624000000
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 6 }^{ 2 }$
86242390425600
17605804800000
$\mathrm{c}_{ 4 }^{ 3 }\mathrm{c}_{ 6 }^{ }$
64907421320960
13500841600000
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ }$
56155350159360
9603236160000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ 2 }$
37660572692480
6738177040000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 8 }^{ }$
24530800855040
3676588120000
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 10 }^{ }$
14747557928960
1459909120000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
14244457018880
1835380960000
$\mathrm{c}_{ 6 }^{ 3 }$
9553579524480
1287476640000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 10 }^{ }$
6448976952320
559476160000
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
6227441933120
702799360000
$\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 10 }^{ }$
2821199089280
214406248000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 8 }^{ 2 }$
2360786818560
191623650000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 10 }^{ }$
1640647441920
107096280000
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 12 }^{ }$
1231467509760
46722720000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 12 }^{ }$
539392972800
17937420000
$\mathrm{c}_{ 8 }^{ }\mathrm{c}_{ 10 }^{ }$
273089658720
11208918000
$\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 12 }^{ }$
137685310240
3443000000
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 14 }^{ }$
77346804480
774480000
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 14 }^{ }$
33938470560
298344000
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 16 }^{ }$
3748665600
6090000
$\mathrm{c}_{ 18 }^{ }$
143184000
18000
monomial
K3[10] -type Kum10 -type
$\mathrm{c}_{ 2 }^{ 10 }$
784015765747670016
336252992654447616
$\mathrm{c}_{ 2 }^{ 8 }\mathrm{c}_{ 4 }^{ }$
344349868718803968
132107428736160768
$\mathrm{c}_{ 2 }^{ 6 }\mathrm{c}_{ 4 }^{ 2 }$
151292288348880768
51898082311033728
$\mathrm{c}_{ 2 }^{ 7 }\mathrm{c}_{ 6 }^{ }$
88352799453985536
26693534659013376
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 4 }^{ 3 }$
66492814703915520
20386379301294336
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }$
38843392796682624
10486371945354624
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ 4 }$
29232974793607632
8007472661159664
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 6 }^{ }$
17082588734970336
4119203015724192
$\mathrm{c}_{ 2 }^{ 6 }\mathrm{c}_{ 8 }^{ }$
14887462352860800
3051655882366080
$\mathrm{c}_{ 4 }^{ 5 }$
12856151785953456
3144990890482320
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 6 }^{ 2 }$
9985643035208064
2119158341714304
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 3 }\mathrm{c}_{ 6 }^{ }$
7515004051819440
1617975749261520
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ }$
6551210934127872
1199055419079936
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ 2 }$
4394286954851616
832451953404192
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 8 }^{ }$
2883767951787984
471105410929296
$\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 6 }^{ 2 }$
1934365074963120
326987093337168
$\mathrm{c}_{ 2 }^{ 5 }\mathrm{c}_{ 10 }^{ }$
1758703316056704
204371090647680
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
1687307749020288
242424490790592
$\mathrm{c}_{ 4 }^{ 3 }\mathrm{c}_{ 8 }^{ }$
1269802518792480
185086417093248
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ 3 }$
1131809390142912
168265889899008
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 10 }^{ }$
774819641550240
80342429404512
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 8 }^{ }$
743198906501136
95252580881040
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 10 }^{ }$
341463574094256
31583103012912
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 8 }^{ 2 }$
285897881921148
27756335356332
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 10 }^{ }$
200033938656144
16258455456144
$\mathrm{c}_{ 6 }^{ 2 }\mathrm{c}_{ 8 }^{ }$
191775038293488
19264369884144
$\mathrm{c}_{ 2 }^{ 4 }\mathrm{c}_{ 12 }^{ }$
152045432439552
8013253087488
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 8 }^{ 2 }$
126041828580756
10909113168228
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 10 }^{ }$
88209449234208
16391906873440
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 12 }^{ }$
67076166081096
3153305609256
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 8 }^{ }\mathrm{c}_{ 10 }^{ }$
34013661979068
1864193494284
$\mathrm{c}_{ 4 }^{ 2 }\mathrm{c}_{ 12 }^{ }$
29600340453792
1240853563488
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 12 }^{ }$
17364913158312
639144656040
$\mathrm{c}_{ 2 }^{ 3 }\mathrm{c}_{ 14 }^{ }$
9924722506512
178626056400
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 14 }^{ }$
4384872164952
70412082840
$\mathrm{c}_{ 10 }^{ 2 }$
4065174516348
125480168748
$\mathrm{c}_{ 8 }^{ }\mathrm{c}_{ 12 }^{ }$
2965017020340
73457352276
$\mathrm{c}_{ 6 }^{ }\mathrm{c}_{ 14 }^{ }$
1138643559096
14310113400
$\mathrm{c}_{ 2 }^{ 2 }\mathrm{c}_{ 16 }^{ }$
501196808844
12116210140
$\mathrm{c}_{ 4 }^{ }\mathrm{c}_{ 16 }^{ }$
221782223484
836469612
$\mathrm{c}_{ 2 }^{ }\mathrm{c}_{ 18 }^{ }$
19976926140
11419980
$\mathrm{c}_{ 20 }^{ }$
639249300
15972
K3[n ] -type
The Chern numbers can be computed using the Bott residue formula, starting from [Theorem 0.1, MR1795551 ].
Kumn -type
The Chern numbers have been computed by Nieper–Wisskirchen in [MR1906063 ].
OG6
The Chern numbers are computed in [Corollary 6.8, MR3798592 ].
OG10
The Chern numbers are computed in [Appendix A, 2006.09307 ].
Computations of Chern numbers of K3[n ] - and Kumn -type can be done using the IntersectionTheory library written by Jieao Song in Julia.
References
MR1795551
Ellingsrud, Geir and Gö ttsche, Lothar and Lehn, Manfred. "On the cobordism class of the H ilbert scheme of a surface." In: J. Algebraic Geom. 10 (2001), pp. 81–100
MR1906063
Nieper-Wisskirchen, Marc A.. "On the C hern numbers of generalised K ummer varieties." In: Math. Res. Lett. 9 (2002), pp. 597–606. doi:10.4310/MRL.2002.v9.n5.a3
MR3798592
Mongardi, Giovanni and Rapagnetta, Antonio and Saccà, Giulia. "The H odge diamond of O 'G rady's six-dimensional example." In: Compos. Math. 154 (2018), pp. 984–1013. doi:10.1112/S0010437X1700803X
2006.09307
Ortiz, Ángel David Ríos. "Riemann-Roch Polynomials of the known hyperkähler manifolds". arXiv:2006.09307